Techniques for Automated Parameter Estimation in Computational Models of Probabilistic Systems

ثبت نشده
چکیده

The main contribution of this dissertation is the design of two new algorithms for automatically synthesizing values of numerical parameters of computational models of complex stochastic systems such that the resultant model meets user-specified behavioral specifications. These algorithms are designed to operate on probabilistic systems – systems that, in general, behave differently under identical conditions. The algorithms work using an approach that combines formal verification and mathematical optimization to explore a model’s parameter space. The problem of determining whether a model instantiated with a given set of parameter values satisfies the desired specification is first defined using formal verification terminology, and then reformulated in terms of statistical hypothesis testing. Parameter space exploration involves determining the outcome of the hypothesis testing query for each parameter point and is guided using simulated annealing. The first algorithm uses the sequential probability ratio test (SPRT) to solve the hypothesis testing problems, whereas the second algorithm uses an approach based on Bayesian statistical model checking (BSMC). The SPRT-based parameter synthesis algorithm was used to validate that a given model of glucose-insulin metabolism has the capability of representing diabetic behavior by synthesizing values of three parameters that ensure that the glucose-insulin subsystem spends at least 20 minutes in a diabetic scenario. The BSMC-based algorithm was used to discover the values of parameters in a physiological model of the acute inflammatory response that guarantee a set of desired clinical outcomes. These two applications demonstrate how our algorithms use formal verification, statistical hypothesis testing and mathematical optimization to automatically synthesize parameters of complex probabilistic models in order to meet user-specified behavioral properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Techniques for automated parameter estimation in computational models of probabilistic systems

The main contribution of this dissertation is the design of two new algorithms for automatically synthesizing values of numerical parameters of computational models of complex stochastic systems such that the resultant model meets user-specified behavioral specifications. These algorithms are designed to operate on probabilistic systems – systems that, in general, behave differently under ident...

متن کامل

A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin

Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...

متن کامل

Fast Bayesian updating of large-scale finite element models using CMS technique and surrogate models

A Bayesian probabilistic framework for parameter estimation is applied for updating large-order finite element models of structures using response measurements. Fast and accurate component mode synthesis (CMS) techniques are proposed, consistent with the finite element model parameterization, to achieve drastic reductions in computational effort. Further computational savings are achieved by ad...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

The Design of Automated Validation and Explanation for Large-Scale Social Agent Systems

Socio-technical problems, such as how smallpox outbreaks would spread in and affect modern societies, often have complex interrelated parts that defy simple mathematical analyses. A promising toolkit to solve these problems is large-scale multi-agent models, whose subsets with stochastic and knowledge-intensive networked interactions are social agent models. The value of these models and their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016